z-logo
open-access-imgOpen Access
Broadly tuned and respiration-independent inhibition in the olfactory bulb of awake mice
Author(s) -
Brittany N. Cazakoff,
Billy Y. B. Lau,
Kerensa L. Crump,
Heike S. Demmer,
Stephen D. Shea
Publication year - 2014
Publication title -
nature neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 13.403
H-Index - 422
eISSN - 1546-1726
pISSN - 1097-6256
DOI - 10.1038/nn.3669
Subject(s) - olfactory bulb , odor , wakefulness , neuroscience , olfactory system , respiration , olfactory tubercle , premovement neuronal activity , chemistry , biology , central nervous system , anatomy , electroencephalography
Olfactory representations are shaped by brain state and respiration. The interaction and circuit substrates of these influences are unclear. Granule cells (GCs) in the main olfactory bulb (MOB) are presumed to sculpt activity reaching the cortex via inhibition of mitral/tufted cells (MTs). GCs potentially make ensemble activity more sparse by facilitating lateral inhibition among MTs and/or enforce temporally precise activity locked to breathing. Yet the selectivity and temporal structure of wakeful GC activity are unknown. We recorded GCs in the MOB of anesthetized and awake mice and identified state-dependent features of odor coding and temporal patterning. Under anesthesia, GCs were sparsely active and strongly and synchronously coupled to respiration. Upon waking, GCs desynchronized, broadened their tuning and largely fired independently from respiration. Thus, during wakefulness, GCs exhibited stronger odor responses with less temporal structure. We propose that during wakefulness GCs may shape MT odor responses through broadened lateral interactions rather than respiratory synchronization.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom