Neurons derive from the more apical daughter in asymmetric divisions in the zebrafish neural tube
Author(s) -
Paula Alexandre,
Alexander M. Reugels,
David Barker,
Eric Blanc,
Jonathan D. W. Clarke
Publication year - 2010
Publication title -
nature neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 13.403
H-Index - 422
eISSN - 1546-1726
pISSN - 1097-6256
DOI - 10.1038/nn.2547
Subject(s) - zebrafish , biology , asymmetric cell division , neural tube , progenitor cell , cell division , progenitor , microbiology and biotechnology , daughter , neuroscience , population , embryo , anatomy , cell , genetics , stem cell , evolutionary biology , gene , demography , sociology
In the developing CNS, asymmetric cell division is critical for maintaining the balanced production of differentiating neurons while renewing the population of neural progenitors. In invertebrates, this process depends on asymmetric inheritance of fate determinants during progenitor divisions. A similar mechanism is widely believed to underlie asymmetrically fated divisions in vertebrates, but compelling evidence for this is missing. We used live imaging of individual progenitors in the intact zebrafish embryo CNS to test this hypothesis. We found that asymmetric inheritance of a subcellular domain is strongly correlated with asymmetric daughter fates and our results reveal an unexpected feature of this process. The daughter cell destined to become a neuron was derived from the more apical of the two daughters, whereas the more basal daughter inherited the basal process and replenished the apical progenitor pool.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom