Predicting causal variants affecting expression by using whole-genome sequencing and RNA-seq from multiple human tissues
Author(s) -
Andrew Brown,
Ana Viñuela,
Olivier Delaneau,
Tim D. Spector,
Kerrin S. Small,
Emmanouil T. Dermitzakis
Publication year - 2017
Publication title -
nature genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 18.861
H-Index - 573
eISSN - 1546-1718
pISSN - 1061-4036
DOI - 10.1038/ng.3979
Subject(s) - biology , genome wide association study , expression quantitative trait loci , genetics , computational biology , quantitative trait locus , genetic association , single nucleotide polymorphism , gene , genotype
Genetic association mapping produces statistical links between phenotypes and genomic regions, but identifying causal variants remains difficult. Whole-genome sequencing (WGS) can help by providing complete knowledge of all genetic variants, but it is financially prohibitive for well-powered GWAS studies. We performed mapping of expression quantitative trait loci (eQTLs) with WGS and RNA-seq, and found that lead eQTL variants called with WGS were more likely to be causal. Through simulations, we derived properties of causal variants and used them to develop a method for identifying likely causal SNPs. We estimated that 25-70% of causal variants were located in open-chromatin regions, depending on the tissue and experiment. Finally, we identified a set of high-confidence causal variants and showed that these were more enriched in GWAS associations than other eQTLs. Of those, we found 65 associations with GWAS traits and provide examples in which genes implicated by expression are functionally validated as being relevant for complex traits.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom