z-logo
open-access-imgOpen Access
Innovation and constraint leading to complex multicellularity in the Ascomycota
Author(s) -
Tu Anh Nguyen,
Ousmane H. Cissé,
Jie Yun Wong,
Peng Zheng,
David Hewitt,
Minou Nowrousian,
Jason Stajich,
Gregory Jedd
Publication year - 2017
Publication title -
nature communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.559
H-Index - 365
ISSN - 2041-1723
DOI - 10.1038/ncomms14444
Subject(s) - multicellular organism , biology , ascomycota , evolutionary biology , genome , gene , genetics
The advent of complex multicellularity (CM) was a pivotal event in the evolution of animals, plants and fungi. In the fungal Ascomycota, CM is based on hyphal filaments and arose in the Pezizomycotina. The genus Neolecta defines an enigma: phylogenetically placed in a related group containing mostly yeasts, Neolecta nevertheless possesses Pezizomycotina-like CM. Here we sequence the Neolecta irregularis genome and identify CM-associated functions by searching for genes conserved in Neolecta and the Pezizomycotina, which are absent or divergent in budding or fission yeasts. This group of 1,050 genes is enriched for functions related to diverse endomembrane systems and their organization. Remarkably, most show evidence for divergence in both yeasts. Using functional genomics, we identify new genes involved in fungal complexification. Together, these data show that rudimentary multicellularity is deeply rooted in the Ascomycota. Extensive parallel gene divergence during simplification and constraint leading to CM suggest a deterministic process where shared modes of cellular organization select for similarly configured organelle- and transport-related machineries.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom