Boninite-like intraplate magmas from Manihiki Plateau require ultra-depleted and enriched source components
Author(s) -
Roman Golowin,
Maxim Portnyagin,
Kaj Hoernle,
Folkmar Hauff,
Andrey Gurenko,
Dieter GarbeSchönberg,
Reinhard Werner,
Simon Turner
Publication year - 2017
Publication title -
nature communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.559
H-Index - 365
ISSN - 2041-1723
DOI - 10.1038/ncomms14322
Subject(s) - geology , geochemistry , mantle (geology) , mantle plume , subduction , basalt , partial melting , intraplate earthquake , oceanic crust , petrology , paleontology , lithosphere , tectonics
The Ontong Java and Manihiki oceanic plateaus are believed to have formed through high-degree melting of a mantle plume head. Boninite-like, low-Ti basement rocks at Manihiki, however, imply a more complex magma genesis compared with Ontong Java basement lavas that can be generated by ∼30% melting of a primitive mantle source. Here we show that the trace element and isotope compositions of low-Ti Manihiki rocks can best be explained by re-melting of an ultra-depleted source (possibly a common mantle component in the Ontong Java and Manihiki plume sources) re-enriched by ≤1% of an ocean-island-basalt-like melt component. Unlike boninites formed via hydrous flux melting of refractory mantle at subduction zones, these boninite-like intraplate rocks formed through adiabatic decompression melting of refractory plume material that has been metasomatized by ocean-island-basalt-like melts. Our results suggest that caution is required before assuming all Archaean boninites were formed in association with subduction processes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom