z-logo
open-access-imgOpen Access
Promotion of mitochondrial biogenesis by necdin protects neurons against mitochondrial insults
Author(s) -
Koichi Hasegawa,
Toru Yasuda,
Chinatsu Shiraishi,
Kazushiro Fujiwara,
Serge Przedborski,
Hideki Mochizuki,
Kazuaki Yoshikawa
Publication year - 2016
Publication title -
nature communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.559
H-Index - 365
ISSN - 2041-1723
DOI - 10.1038/ncomms10943
Subject(s) - mitochondrial biogenesis , mitochondrion , microbiology and biotechnology , substantia nigra , biogenesis , biology , neuroprotection , tfam , dnaja3 , mitochondrial dna , dopaminergic , mitochondrial fusion , biochemistry , neuroscience , dopamine , gene
Neurons rely heavily on mitochondria for their function and survival. Mitochondrial dysfunction contributes to the pathogenesis of neurodegenerative diseases such as Parkinson's disease. PGC-1α is a master regulator of mitochondrial biogenesis and function. Here we identify necdin as a potent PGC-1α stabilizer that promotes mitochondrial biogenesis via PGC-1α in mammalian neurons. Expression of genes encoding mitochondria-specific proteins decreases significantly in necdin-null cortical neurons, where mitochondrial function and expression of the PGC-1α protein are reduced. Necdin strongly stabilizes PGC-1α by inhibiting its ubiquitin-dependent degradation. Forced expression of necdin enhances mitochondrial function in primary cortical neurons and human SH-SY5Y neuroblastoma cells to prevent mitochondrial respiratory chain inhibitor-induced degeneration. Moreover, overexpression of necdin in the substantia nigra in vivo of adult mice protects dopaminergic neurons against degeneration in experimental Parkinson's disease. These data reveal that necdin promotes mitochondrial biogenesis through stabilization of endogenous PGC-1α to exert neuroprotection against mitochondrial insults.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom