Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming
Author(s) -
Gaoyang Liang,
Jin He,
Yi Zhang
Publication year - 2012
Publication title -
nature cell biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 11.38
H-Index - 369
eISSN - 1476-4679
pISSN - 1465-7392
DOI - 10.1038/ncb2483
Subject(s) - reprogramming , demethylase , induced pluripotent stem cell , epigenetics , biology , microbiology and biotechnology , histone , dna methylation , somatic cell , transcription factor , genetics , gene , embryonic stem cell , gene expression
Transcription-factor-directed reprogramming from somatic cells to induced pluripotent stem cells (iPSCs) is by nature an epigenetic process of cell fate change. Previous studies have demonstrated that this inefficient process can be facilitated by the inclusion of additional factors. To gain insight into the reprogramming mechanism, we aimed to identify epigenetic enzymes capable of promoting iPSC generation. Here we show that Kdm2b, a histone H3 Lys 36 dimethyl (H3K36me2)-specific demethylase, has the capacity to promote iPSC generation. This capacity depends on its demethylase and DNA-binding activities, but is largely independent of its role in antagonizing senescence. Kdm2b functions at the beginning of the reprogramming process and enhances activation of early responsive genes in reprogramming. Kdm2b contributes to gene activation by binding to and demethylating the gene promoters. Our studies not only identify an important epigenetic factor for iPSC generation, but also reveal the molecular mechanism underlying how Kdm2b contributes to reprogramming.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom