z-logo
open-access-imgOpen Access
Inhibition of miR-155 Protects Against LPS-induced Cardiac Dysfunction and Apoptosis in Mice
Author(s) -
Hui Wang,
Yihua Bei,
Peipei Huang,
Qiulian Zhou,
Jing Shi,
Qi Sun,
Jiuchang Zhong,
Xinli Li,
Xiangqing Kong,
Junjie Xiao
Publication year - 2016
Publication title -
molecular therapy — nucleic acids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.208
H-Index - 59
ISSN - 2162-2531
DOI - 10.1038/mtna.2016.80
Subject(s) - tunel assay , sepsis , medicine , septic shock , apoptosis , western blot , downregulation and upregulation , terminal deoxynucleotidyl transferase , mir 155 , cardiac function curve , organ dysfunction , heart failure , biology , immunohistochemistry , gene , biochemistry
Sepsis-induced myocardial dysfunction represents a major cause of death in intensive care units. Dysregulated microRNAs (miR)-155 has been implicated in multiple cardiovascular diseases and miR-155 can be induced by lipopolysaccharide (LPS). However, the role of miR-155 in LPS-induced cardiac dysfunction is unclear. Septic cardiac dysfunction in mice was induced by intraperitoneal injection of LPS (5 mg/kg) and miR-155 was found to be significantly increased in heart challenged with LPS. Pharmacological inhibition of miR-155 using antagomiR improved cardiac function and suppressed cardiac apoptosis induced by LPS in mice as determined by echocardiography, terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) assay, and Western blot for Bax and Bcl-2, while overexpression of miR-155 using agomiR had inverse effects. Pea15a was identified as a target gene of miR-155, mediating its effects in controlling apoptosis of cardiomyocytes as evidenced by luciferase reporter assays, quantitative real time-polymerase chain reaction, Western blot, and TUNEL staining. Noteworthy, miR-155 was also found to be upregulated in the plasma of patients with septic cardiac dysfunction compared to sepsis patients without cardiac dysfunction, indicating a potential clinical relevance of miR-155. The receiver-operator characteristic curve indicated that plasma miR-155 might be a biomarker for sepsis patients developing cardiac dysfunction. Therefore, inhibition of miR-155 represents a novel therapy for septic myocardial dysfunction

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom