z-logo
open-access-imgOpen Access
A High-Capacity Adenoviral Hybrid Vector System Utilizing the Hyperactive Sleeping Beauty Transposase SB100X for Enhanced Integration
Author(s) -
Philip Boehme,
Wenli Zhang,
Manish Solanki,
Eric EhrkeSchulz,
Anja Ehrhardt
Publication year - 2016
Publication title -
molecular therapy — nucleic acids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.208
H-Index - 59
ISSN - 2162-2531
DOI - 10.1038/mtna.2016.44
Subject(s) - transposase , viral vector , transgene , transduction (biophysics) , transposable element , sleeping beauty transposon system , plasmid , biology , gene delivery , computational biology , genetic enhancement , genome , genetics , gene , recombinant dna , biophysics
For efficient delivery of required genetic elements we utilized high-capacity adenoviral vectors in the past allowing high transgene capacities of up to 36 kb. Previously we explored the hyperactive Sleeping Beauty (SB) transposase (HSB5) for somatic integration from the high-capacity adenoviral vectors genome. To further improve this hybrid vector system we hypothesized that the previously described hyperactive SB transposase SB100X will result in significantly improved efficacies after transduction of target cells. Plasmid based delivery of the SB100X system revealed significantly increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5. After optimizing experimental setups for high-capacity adenoviral vectors-based delivery of the SB100X system we observed up to eightfold and 100-fold increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5 and the inactive transposase mSB, respectively. Furthermore, transposon copy numbers per cell were doubled with SB100X compared with HSB5 when using the identical multiplicity of infection. We believe that this improved hybrid vector system represents a valuable tool for achieving stabilized transgene expression in cycling cells and for treatment of numerous genetic disorders. Especially for in vivo approaches this improved adenoviral hybrid vector system will be advantageous because it may potentially allow reduction of the applied viral dose

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom