z-logo
open-access-imgOpen Access
ETV6 Rearrangements in Patients with Infantile Fibrosarcomas and Congenital Mesoblastic Nephromas by Fluorescence In Situ Hybridization
Author(s) -
Camilo Adem,
David Gisselsson,
Paola Dal Cin,
Antonio G. Nascimento
Publication year - 2001
Publication title -
modern pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.596
H-Index - 153
eISSN - 1530-0285
pISSN - 0893-3952
DOI - 10.1038/modpathol.3880469
Subject(s) - fluorescence in situ hybridization , pathology , biology , in situ hybridization , trisomy , etv6 , in situ hybridisation , gene rearrangement , chromosome 12 , chromosome , chromosomal translocation , gene , immunohistochemistry , medicine , genetics , gene expression
Congenital mesoblastic nephroma (CMN) and infantile fibrosarcoma (IFS) are two pediatric tumors arising in the kidneys and soft tissues of infants, respectively. Recently, a t(12;15)(p13;q25) resulting in ETV6-NTRK3 gene fusion was detected in patients with IFS and in patients with the cellular type of CMN, suggesting a common pathogenetic pathway. We investigated the presence or absence of ETV6 rearrangements and numerical abnormalities of chromosome 11 by using fluorescence in situ hybridization on paraffin-embedded material from five cases of IFS, two of CMN, and one of mixed type (CMN and IFS) found in our files. In three cases of IFS, we found ETV6 gene rearrangement but a normal copy number of chromosome 11. One case each of IFS, the cellular type of CMN, and the mixed type (CMN and IFS) had both abnormalities. In a case of classic CMN, neither trisomy 11 nor gene rearrangement was found. It is possible that trisomy 11 is a later, nonessential event in the pathogenetic process or that this secondary aberration is associated with still-unrecognized clinical or biological characteristics. We confirmed that IFS and the cellular type of CMN are cytogenetically related and can occur synchronously in the same organ.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom