Cross-reactivity of the BRAF VE1 antibody with epitopes in axonemal dyneins leads to staining of cilia
Author(s) -
Robert T. Jones,
Malak Abedalthagafi,
Mohan Brahmandam,
Edward Greenfield,
Mai P. Hoang,
David N. Louis,
Jason L. Hornick,
Sandro Santagata
Publication year - 2014
Publication title -
modern pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.596
H-Index - 153
eISSN - 1530-0285
pISSN - 0893-3952
DOI - 10.1038/modpathol.2014.150
Subject(s) - cilium , biology , epitope , motile cilium , antibody , flagellum , pathology , microtubule , microbiology and biotechnology , medicine , immunology , genetics , gene
Antibodies that recognize neo-epitopes in tumor cells are valuable tools in the evaluation of tissue biopsy or resection specimens. The VE1 antibody that recognizes the V600E-mutant BRAF protein is one such example. We have recently shown that the vast majority of papillary craniopharyngiomas-tumors that arise in the sellar or suprasellar regions of the brain-harbor BRAF V600E mutations. The VE1 antibody can be effective in discriminating papillary craniopharyngioma from adamantinomatous craniopharyngioma, which harbors mutations in CTNNB1 and not BRAF. While further characterizing the use of the VE1 antibody in the differential diagnosis of suprasellar lesions, we found that the VE1 antibody stains the epithelial cells lining Rathke's cleft cysts with very strong staining of the cilia of these cells. We used targeted sequencing to show that Rathke's cleft cysts do not harbor the BRAF V600E mutation. Moreover, we found that the VE1 antibody reacts strongly with cilia in various structures-the bronchial airways, the fallopian tubes, the nasopharynx, and the epididymis-as well as with the flagella of sperm. In addition, VE1 reacts strongly with the cilia of the ependymal lining of the brain and with the cilia-containing microlumens of ependymoma tumors. There is significant sequence homology between the synthetic peptide (amino acid 596-606 of BRAF V600E: GLATEKSRWSG) that was used to generate the VE1 antibody and regions of multiple axonemal dynein heavy chain proteins (eg, DNAH2, DNAH7, and DNAH12). These proteins are major components of the axonemes of cilia and flagella where they drive the sliding of microtubules. In ELISA assays, we show that the VE1 antibody recognizes epitopes from these proteins. A familiarity with the cross-reactivity of the VE1 antibody with epitopes of proteins in cilia is of value when evaluating tissues stained with this important clinical antibody.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom