Immunohistochemistry is highly sensitive and specific for the detection of NRASQ61R mutation in melanoma
Author(s) -
Daniela Massi,
Lisa Simi,
Elisa Sensi,
Gianna Baroni,
Gongda Xue,
Cristian Scatena,
Adele Caldarella,
Pamela Pinzani,
Gabriella Fontanini,
Alessandra Carobbio,
Carmelo Urso,
Mario Mandalà
Publication year - 2014
Publication title -
modern pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.596
H-Index - 153
eISSN - 1530-0285
pISSN - 0893-3952
DOI - 10.1038/modpathol.2014.137
Subject(s) - neuroblastoma ras viral oncogene homolog , immunohistochemistry , mutation , melanoma , antibody , medicine , monoclonal antibody , pathology , cancer research , point mutation , biology , immunology , gene , genetics , kras
Testing for NRAS is now integral part in the assessment of metastatic melanoma patients because there is evidence that NRAS-mutated patients may be sensitive to MEK inhibitors, and RAS mutation is a common mechanism of acquired resistance during treatment with BRAF inhibitors. This study evaluated the sensitivity and specificity of immunohistochemical analysis using an N-Ras (Q61R) antibody to detect the presence of the NRASQ61R mutation in melanoma patients. A total of 98 primary cutaneous melanomas that have undergone examination of NRAS mutation were retrieved from a multicentric database. Formalin-fixed and paraffin-embedded melanoma tissues were analyzed for BRAF and NRAS mutations by independent, blinded observers using both conventional DNA molecular techniques and immunohistochemistry with the novel anti-human N-Ras (Q61R) monoclonal antibody (clone SP174). The antibody showed a sensitivity of 100% (14/14) and a specificity of 100% (83/83) for detecting the presence of an NRASQ61R mutation. Of the NRAS-mutated cases, none of the non-Q61R cases stained positive with the antibody (0/7). There were three cases with discordant NRAS mutational results. Additional molecular analysis confirmed the immunohistochemically obtained NRAS result in all cases, suggesting that a multiple analytical approach can be required to reach the correct sample classification. The reported immunohistochemical method is an accurate, rapid, and cost-effective method for detecting NRASQ61R mutation in melanoma patients, and represents a valuable supplement to traditional mutation testing. If validated in further studies, genetic testing would only be required for immunohistochemistry-negative patients to detect non-Q61R mutations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom