Differential expression of aurora-A kinase in T-cell lymphomas
Author(s) -
Rashmi KanagalShamanna,
Norman L. Lehman,
James P. O’Donnell,
Megan S. Lim,
Daniel Schultz,
Dhananjay Chitale,
Carlos E. BuesoRamos,
L. Jeffrey Medeiros,
Kedar Inamdar
Publication year - 2013
Publication title -
modern pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.596
H-Index - 153
eISSN - 1530-0285
pISSN - 0893-3952
DOI - 10.1038/modpathol.2012.211
Subject(s) - anaplastic large cell lymphoma , anaplastic lymphoma kinase , lymphoma , cancer research , large cell , aurora b kinase , biology , bcl10 , t cell lymphoma , aurora kinase , cell , pathology , medicine , cell cycle , cancer , cell division , immunology , spindle apparatus , genetics , adenocarcinoma , malignant pleural effusion , lung cancer
Aurora-A is a mitotic kinase implicated in oncogenesis and is known to be overexpressed in B-cell lymphomas and plasma cell myeloma. The expression of Aurora-A kinase (henceforth referred to as Aurora-A) in T-cell lymphomas is not well characterized. In this study, we assessed Aurora-A expression by immunohistochemical analysis in 100 lymphomas encompassing a variety of T-cell lymphomas as categorized in the World Health Organization classification. Aurora-A expression was highest in anaplastic large-cell lymphomas and variably expressed in other types of T-cell lymphomas. In addition, the pattern of Aurora-A expression was predominantly cytoplasmic in ALK-positive anaplastic large-cell lymphoma and was nuclear in ALK-negative anaplastic large-cell lymphoma and other T-cell lymphomas, suggesting altered biochemical mechanisms of Aurora-A nuclear transport in ALK-positive anaplastic large-cell lymphoma. Reverse transcriptase-PCR analysis showed that Aurora-A is more highly expressed in ALK-positive anaplastic large-cell lymphoma than in ALK-negative anaplastic large-cell lymphoma, and is relatively lower in peripheral T-cell lymphomas. Using western blot analysis and the DEL cell line (derived from ALK-positive anaplastic large-cell lymphoma), we showed that Aurora-A expression is decreased after treatment with either MYC or MEK inhibitors, consistent with the MYC and MAP kinase signaling pathways being involved in driving Aurora-A expression; the greatest decrease was observed after MYC inhibition. These findings provide insights into the possible importance of Aurora-A overexpression in anaplastic large-cell lymphoma pathogenesis, and also suggest that Aurora-A inhibition could be a potential therapeutic approach for patients with anaplastic large-cell lymphoma.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom