z-logo
open-access-imgOpen Access
A novel kind of tumor type-characteristic junction: plakophilin-2 as a major protein of adherens junctions in cardiac myxomata
Author(s) -
Steffen Rickelt,
Stefania Rizzo,
Yvette Doerflinger,
Hanswalter Zentgraf,
Cristina Basso,
Gino Gerosa,
Gaetano Thiene,
Roland Moll,
Werner W. Franke
Publication year - 2010
Publication title -
modern pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.596
H-Index - 153
eISSN - 1530-0285
pISSN - 0893-3952
DOI - 10.1038/modpathol.2010.138
Subject(s) - adherens junction , plakoglobin , colocalization , cadherin , biology , desmosome , microbiology and biotechnology , armadillo , pathology , catenin , chemistry , medicine , wnt signaling pathway , cell , biochemistry , signal transduction
Using novel antibodies of high avidity to--and specificity for--the constitutive desmosomal plaque protein, plakophilin-2 (Pkp2), in a systematic study of the molecular composition of junctions connecting the cells of soft tissue tumors, we have discovered with immunocytochemical, biochemical and electron microscopical methods, a novel type of adherens junctions in all 32 cardiac myxomata examined. These junctions contain cadherin-11 as their major transmembrane glycoprotein, which we could repeatedly show in colocalization with N-cadherin, anchored in a cytoplasmic plaque formed by α- and β-catenin, together with the further armadillo-type proteins plakoglobin, p120, p0071 and ARVCF. Surprisingly, all adherens junctions of these tumors contained, in addition, another major armadillo protein Pkp2, hitherto known as an obligatory and characteristic constituent of desmosomes in epithelium-derived tumors. We have not detected Pkp2 in a series of noncardiac myxomata studied in parallel. Therefore, we conclude that this acquisition of Pkp2, which we have recently also observed in some mesenchymally derived cells growing in culture, can also occur in tumorigenic transformations in situ. We propose to examine the marker value of Pkp2 in clinical diagnoses of cardiac myxomata and to develop Pkp2-targeted therapeutic reagents.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom