z-logo
open-access-imgOpen Access
Subversion of antimicrobial calprotectin (S100A8/S100A9 complex) in the cytoplasm of TR146 epithelial cells after invasion by Listeria monocytogenes
Author(s) -
Alexandre Augusto Zaia,
Kaia J. Sappington,
Kanokwan Nisapakultorn,
Walter Chazin,
Elizabeth A. Dietrich,
Karen F. Ross,
Mark C. Herzberg
Publication year - 2008
Publication title -
mucosal immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.596
H-Index - 101
eISSN - 1935-3456
pISSN - 1933-0219
DOI - 10.1038/mi.2008.63
Subject(s) - calprotectin , microbiology and biotechnology , biology , listeria monocytogenes , cytoplasm , bacteria , medicine , pathology , genetics , disease , inflammatory bowel disease
Expressed by squamous mucosal keratinocytes, calprotectin is a complex of two EF-hand calcium-binding proteins of the S100 subfamily (S100A8 and S100A9) with significant antimicrobial activity. Calprotectin-expressing cells resist invasion by Porphyromonas gingivalis, Listeria monocytogenes, and Salmonella enterica serovar Typhimurium (S. typhimurium). To understand the interactions between calprotectin and invasive bacteria, we studied the distribution of calprotectin in the cytoplasm of TR146 epithelial cells. In response to L. monocytogenes, calprotectin mobilized from a diffuse cytoplasmic distribution to a filamentous pattern and colocalized with the microtubule network. Listeria more frequently invaded cells with mobilized calprotectin. Calprotectin mobilization was listeriolysin O-dependent and required calcium (extracellular and intracellular) and an intact microtubule network. In the presence of preformed microtubules in vitro, the anti-Listeria activity of calprotectin was abrogated. To facilitate intraepithelial survival, therefore, Listeria mobilizes calprotectin to colocalize with cytoplasmic microtubules, subverting anti-Listeria activity and autonomous cellular immunity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom