Reconfigurable metasurfaces that enable light polarization control by light
Author(s) -
Mengxin Ren,
Wei Wu,
Wei Cai,
Biao Pi,
Xinzheng Zhang,
Jingjun Xu
Publication year - 2016
Publication title -
light science and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.104
H-Index - 96
eISSN - 2095-5545
pISSN - 2047-7538
DOI - 10.1038/lsa.2016.254
Subject(s) - polarization (electrochemistry) , optoelectronics , holography , plasmon , optics , materials science , ray , optical switch , physics , chemistry
Plasmonic metasurfaces have recently attracted much attention because of their novel characteristics with respect to light polarization and wave front control on deep-subwavelength scales. The development of metasurfaces with reconfigurable optical responses is opening new opportunities in high-capacity communications, real-time holograms and adaptive optics. Such tunable devices have been developed in the mid-infrared spectral range and operated in light intensity modulation schemes. Here we present a novel optically reconfigurable hybrid metasurface that enables polarization tuning at optical frequencies. The functionality of tuning is realized by switching the coupling conditions between the plasmonic modes and the binary isomeric states of an ethyl red switching layer upon light stimulation. We achieved more than 20° nonlinear changes in the transmitted polarization azimuth using just 4 mW of switching light power. Such design schemes and principles could be easily applied to dynamically adjust the functionalities of other metasurfaces.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom