z-logo
open-access-imgOpen Access
Hypoxia/Reoxygenation Stress Signals an Increase in Organic Anion Transporting polypeptide 1a4 (Oatp1a4) at the Blood–Brain Barrier: Relevance to CNS Drug Delivery
Author(s) -
Brandon Thompson,
Lucy SanchezCovarrubias,
Lauren M. Slosky,
Yifeng Zhang,
MeiLi Laracuente,
Patrick T. Ronaldson
Publication year - 2014
Publication title -
journal of cerebral blood flow and metabolism
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.167
H-Index - 193
eISSN - 1559-7016
pISSN - 0271-678X
DOI - 10.1038/jcbfm.2014.4
Subject(s) - hypoxia (environmental) , blood–brain barrier , pharmacology , medicine , drug , drug delivery , anesthesia , central nervous system , chemistry , oxygen , organic chemistry
Cerebral hypoxia and subsequent reoxygenation stress (H/R) is a component of several diseases. One approach that may enable neural tissue rescue after H/R is central nervous system (CNS) delivery of drugs with brain protective effects such as 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (i.e., statins). Our present in vivo data show that atorvastatin, a commonly prescribed statin, attenuates poly (ADP-ribose) polymerase (PARP) cleavage in the brain after H/R, suggesting neuroprotective efficacy. However, atorvastatin use as a CNS therapeutic is limited by poor blood–brain barrier (BBB) penetration. Therefore, we examined regulation and functional expression of the known statin transporter organic anion transporting polypeptide 1a4 (Oatp1a4) at the BBB under H/R conditions. In rat brain microvessels, H/R (6% O 2 , 60 minutes followed by 21% O 2 , 10 minutes) increased Oatp1a4 expression. Brain uptake of taurocholate (i.e., Oap1a4 probe substrate) and atorvastatin were reduced by Oatp inhibitors (i.e., estrone-3-sulfate and fexofenadine), suggesting involvement of Oatp1a4 in brain drug delivery. Pharmacological inhibition of transforming growth factor- β (TGF- β)/activin receptor-like kinase 5 (ALK5) signaling with the selective inhibitor SB431542 increased Oatp1a4 functional expression, suggesting a role for TGF- β/ALK5 signaling in Oatp1a4 regulation. Taken together, our novel data show that targeting an endogenous BBB drug uptake transporter (i.e., Oatp1a4) may be a viable approach for optimizing CNS drug delivery for treatment of diseases with an H/R component.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom