Evaluation of 2-[18F]fluoroacetate Kinetics in Rodent Models of Cerebral Hypoxia–Ischemia
Author(s) -
Yu Ouyang,
Jeff N. Tinianow,
Simon R. Cherry,
Jan Mařı́k
Publication year - 2014
Publication title -
journal of cerebral blood flow and metabolism
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.167
H-Index - 193
eISSN - 1559-7016
pISSN - 0271-678X
DOI - 10.1038/jcbfm.2014.22
Subject(s) - fluoroacetate , hypoxia (environmental) , ischemia , cerebral hypoxia , kinetics , brain ischemia , neuroscience , medicine , chemistry , biology , oxygen , biochemistry , physics , organic chemistry , quantum mechanics
Glia account for 90% of human brain cells and have a significant role in brain homeostasis. Thus, specific in vivo imaging markers of glial metabolism are potentially valuable. In the brain, 2-fluoroacetate is selectively taken up by glial cells and becomes metabolically trapped in the tricarboxylic acid cycle. Recent work in rodent brain injury models demonstrated elevated lesion uptake of 2-[(18)F]fluoroacetate ([(18)F]FACE), suggesting possible use for specifically imaging glial metabolism. To assess this hypothesis, we evaluated [(18)F]FACE kinetics in rodent models of cerebral hypoxia-ischemia at 3 and 24 hours post insult. Lesion uptake was significantly higher at 30 minutes post injection (P<0.05). An image-based method for input function estimation using cardiac blood was validated. Analysis of whole blood showed no significant metabolites and plasma activity concentrations of ∼50% that of whole blood. Kinetic models describing [(18)F]FACE uptake were developed and quantitatively compared. Elevated [(18)F]FACE uptake was found to be driven primarily by K₁/k₂ rather than k₃, but changes in the latter were detectable. The two-tissue irreversible uptake model (2T3k) was found to be necessary and sufficient for modeling [(18)F]FACE uptake. We conclude that kinetic modeling of [(18)F]FACE uptake represents a potentially useful tool for interrogation of glial metabolism.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom