Translocator Protein (18 kDa) Polymorphism (rs6971) Explains in-vivo Brain Binding Affinity of the PET Radioligand [18F]-FEPPA
Author(s) -
Romina Mizrahi,
Pablo Rusjan,
James L. Kennedy,
Bruce G. Pollock,
Benoit H. Mulsant,
Ivonne Suridjan,
Vincenzo De Luca,
Alan A. Wilson,
Sylvain Houle
Publication year - 2012
Publication title -
journal of cerebral blood flow and metabolism
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.167
H-Index - 193
eISSN - 1559-7016
pISSN - 0271-678X
DOI - 10.1038/jcbfm.2012.46
Subject(s) - translocator protein , radioligand , positron emission tomography , in vivo , chemistry , positron , microbiology and biotechnology , receptor , biology , biochemistry , neuroscience , genetics , physics , immunology , microglia , quantum mechanics , electron , inflammation
[(18)F]-FEPPA binds to the 18-kDa translocator protein (TSPO) and is used in positron emission tomography (PET) to detect microglial activation. However, quantitative interpretations of the PET signal with new generation TSPO PET radioligands are confounded by large interindividual variability in binding affinity. This presents as a trimodal distribution, reflecting high-affinity binders (HABs), low-affinity binder (LAB), and mixed-affinity binders (MABs). Here, we show that one polymorphism (rs6971) located in exon 4 of the TSPO gene, which results in a nonconservative amino-acid substitution from alanine to threonine (Ala147Thr) in the TSPO protein, predicts [(18)F]-FEPPA total distribution volume in human brains. In addition, [(18)F]-FEPPA exhibits clearly different features in the shape of the time activity curves between genetic groups. Testing for the rs6971 polymorphism may allow quantitative interpretation of TSPO PET studies with new generation of TSPO PET radioligands.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom