Hypoxia-Inducible Factor 1 is Essential for Spontaneous Recovery from Traumatic Brain Injury and is a Key Mediator of Heat Acclimation Induced Neuroprotection
Author(s) -
Gali Umschweif,
Alexander Alexandrovich,
Victoria Trembovler,
Michal Horowitz,
Esther Shohami
Publication year - 2013
Publication title -
journal of cerebral blood flow and metabolism
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.167
H-Index - 193
eISSN - 1559-7016
pISSN - 0271-678X
DOI - 10.1038/jcbfm.2012.193
Subject(s) - neuroprotection , traumatic brain injury , hypothermia , mediator , pharmacology , hypoxia (environmental) , medicine , biology , neuroscience , anesthesia , chemistry , endocrinology , organic chemistry , psychiatry , oxygen
Heat acclimation (HA), a well-established preconditioning model, confers neuroprotection in rodent models of traumatic brain injury (TBI). It increases neuroprotective factors, among them is hypoxia-inducible factor 1α (HIF-1α), which is important in the response to postinjury ischemia. However, little is known about the role of HIF-1α in TBI and its contribution to the establishment of the HA protecting phenotype. Therefore, we aimed to explore HIF-1α role in TBI defense mechanisms as well as in HA-induced neuroprotection. Acriflavine was used to inhibit HIF-1 in injured normothermic (NT) or HA mice. After TBI, we evaluated motor function recovery, lesion volume, edema formation, and body temperature as well as HIF-1 downstream transcription targets, such as glucose transporter 1 (GLUT1), vascular endothelial growth factor, and aquaporin 4. We found that HIF-1 inhibition resulted in deterioration of motor function, increased lesion volume, hypothermia, and reduced edema formation. All these parameters were significantly different in the HA mice. Western blot analysis and enzyme-linked immunosorbent assay showed reduced levels of all HIF-1 downstream targets in HA mice, however, only GLUT1 was downregulated in NT mice. We conclude that HIF-1 is a key mediator in both spontaneous recovery and HA-induced neuroprotection after TBI.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom