z-logo
open-access-imgOpen Access
Magnetic resonance perfusion imaging of resting-state cerebral blood flow in preclinical Huntington's disease
Author(s) -
Robert Christian Wolf,
Georg Grön,
Fabio Sambataro,
Nenad Vasić,
Nadine D. Wolf,
Philipp A. Thomann,
Carsten Saft,
G. Bernhard Landwehrmeyer,
Michael Orth
Publication year - 2011
Publication title -
journal of cerebral blood flow and metabolism
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.167
H-Index - 193
eISSN - 1559-7016
pISSN - 0271-678X
DOI - 10.1038/jcbfm.2011.60
Subject(s) - cerebral blood flow , medicine , magnetic resonance imaging , precuneus , perfusion scanning , cardiology , perfusion , neuroimaging , functional magnetic resonance imaging , radiology , psychiatry
Magnetic resonance imaging (MRI) of the brain could be a powerful tool for discovering early biomarkers in clinically presymptomatic carriers of the Huntington's disease gene mutation (preHD). The aim of this study was to investigate the sensitivity of resting-state perfusion MRI in preHD and to identify neural changes, which could serve as biomarkers for future clinical trials. Differences in regional cerebral blood flow (rCBF) in 18 preHD and 18 controls were assessed with a novel MRI method based on perfusion images obtained with continuous arterial spin labeling. High-resolution structural data were collected to test for changes of brain volume. Compared with controls, preHD individuals showed decreased rCBF in medial and lateral prefrontal regions and increased rCBF in the precuneus. PreHD near to symptom onset additionally showed decreased rCBF in the putamen and increased rCBF in the hippocampus. Network analyses revealed an abnormal lateral prefrontal pattern in preHD far and near to motor onset. These data suggest early changes of frontostriatal baseline perfusion in preHD independent of substantial reductions of gray matter volume. This study also shows the feasibility of detecting neural changes in preHD with a robust MRI technique that would be suitable for longitudinal multisite application.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom