Vessel Size Imaging Reveals Pathological Changes of Microvessel Density and Size in Acute Ischemia
Author(s) -
Chao Xu,
Wolf UH Schmidt,
Kersten Villringer,
Peter Brunecker,
Valerij G. Kiselev,
Peter Gall,
Jochen B. Fiebach
Publication year - 2011
Publication title -
journal of cerebral blood flow and metabolism
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.167
H-Index - 193
eISSN - 1559-7016
pISSN - 0271-678X
DOI - 10.1038/jcbfm.2011.38
Subject(s) - penumbra , medicine , cardiology , ischemia , microvessel , pathological , stroke (engine) , radiology , microcirculation , middle cerebral artery , nuclear medicine , angiogenesis , mechanical engineering , engineering
The aim of this study was to test the feasibility of vessel size imaging with precise evaluation of apparent diffusion coefficient and cerebral blood volume and to apply this novel technique in acute stroke patients within a pilot group to observe the microvascular responses in acute ischemic tissue. Microvessel density-related quantity Q and mean vessel size index (VSI) were assessed in 9 healthy volunteers and 13 acute stroke patients with vessel occlusion within 6 hours after symptom onset. Our results in healthy volunteers matched with general anatomical observations. Given the limitation of a small patient cohort, the median VSI in the ischemic area was higher than that in the mirrored region in the contralateral hemisphere (P<0.05). Decreased Q was observed in the ischemic region in 2 patients, whereas no obvious changes of Q were found in the remaining 11 patients. In a patient without recanalization, the VSI hyperintensity in the subcortical area matched well with the final infarct. These data reveal that different observations of microvascular response in the acute ischemic tissue seem to emerge and vessel size imaging may provide useful information for the definition of ischemic penumbra and have an impact on future therapeutic approaches.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom