z-logo
open-access-imgOpen Access
Guanine Nucleotide-Binding Protein Gαi2: A New Partner of Claudin-5 that Regulates Tight Junction Integrity in Human Brain Endothelial Cells
Author(s) -
AnnyClaude Luissint,
Christian Fédérici,
François Guillonneau,
Fabrice Chrétien,
Luc Camoin,
Fabienne Glacial,
Kayathiri Ganeshamoorthy,
PierreOlivier Couraud
Publication year - 2012
Publication title -
journal of cerebral blood flow and metabolism
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.167
H-Index - 193
eISSN - 1559-7016
pISSN - 0271-678X
DOI - 10.1038/jcbfm.2011.202
Subject(s) - claudin , tight junction , microbiology and biotechnology , paracellular transport , blood–brain barrier , biology , endothelial stem cell , occludin , chemistry , biochemistry , permeability (electromagnetism) , central nervous system , neuroscience , in vitro , membrane
The blood—brain barrier (BBB) selectively controls the exchanges between the blood and the brain: it is formed by tight junctions (TJs) between adjacent microvascular endothelial cells. The transmembrane protein claudin-5 is known as a key TJ protein at the BBB, although, the molecular mechanisms by which it regulates TJ tightness are poorly understood. To identify putative claudin-5 partners that contribute to TJ integrity, claudin-5-enriched membrane microdomains were prepared by cell fractionation, using the human brain endothelial cell line hCMEC/D3 and claudin-5 immunoprecipitates were submitted to tandem mass spectrometry. Because a high concentration of mannitol is known to transiently destabilize TJs, this analysis was performed in basal conditions, after mannitol treatment, and after recovery of TJ integrity. We here demonstrate that the G-protein subunit αi2 (Gαi2) interacts with claudin-5 and that association is correlated with TJ integrity in hCMEC/D3 cells; also, a selective expression of Gαi2 is observed in human brain vasculature in situ. Moreover, small interfering RNA-mediated depletion of Gαi2 or claudin-5 in hCMEC/D3 cells similarly increases their paracellular permeability and delays TJ recovery after mannitol treatment. Altogether, our results identify Gαi2 as a novel claudin-5 partner required for TJ integrity in brain endothelial cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom