Sequential Activation of Hypoxia-Inducible Factor 1 and Specificity Protein 1 is Required for Hypoxia-Induced Transcriptional Stimulation of Abcc8
Author(s) -
Seung Kyoon Woo,
Min Seong Kwon,
Zhihua Geng,
Zheng Chen,
Alexander V. Ivanov,
Sergei Bhatta,
Volodymyr Gerzanich,
J. Marc Simard
Publication year - 2011
Publication title -
journal of cerebral blood flow and metabolism
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.167
H-Index - 193
eISSN - 1559-7016
pISSN - 0271-678X
DOI - 10.1038/jcbfm.2011.159
Subject(s) - transcription factor , luciferase , sp1 transcription factor , biology , chromatin immunoprecipitation , microbiology and biotechnology , promoter , transcription (linguistics) , sulfonylurea receptor , reporter gene , gene expression , gene , transfection , biochemistry , protein subunit , linguistics , philosophy
Cerebral ischemia causes increased transcription of sulfonylurea receptor 1 (SUR1), which forms SUR1-regulated NC(Ca-ATP) channels linked to cerebral edema. We tested the hypothesis that hypoxia is an initial signal that stimulates transcription of Abcc8, the gene encoding SUR1, via activation of hypoxia-inducible factor 1 (HIF1). In the brain microvascular endothelial cells, hypoxia increased SUR1 abundance and expression of functional SUR1-regulated NC(Ca-ATP) channels. Luciferase reporter activity driven by the Abcc8 promoter was increased by hypoxia and by coexpression of HIF1α. Surprisingly, a series of luciferase reporter assays studying the Abcc8 promoter revealed that binding sites for specificity protein 1 (Sp1), but not for HIF, were required for stimulation of Abcc8 transcription by HIF1α. Luciferase reporter assays studying Sp1 promoters of three species, and chromatin immunoprecipitation analysis in rats after cerebral ischemia, indicated that HIF binds to HIF-binding sites on the Sp1 promoter to stimulate transcription of the Sp1 gene. We conclude that sequential activation of two transcription factors, HIF and Sp1, is required to stimulate transcription of Abcc8 following cerebral ischemia. Sequential gene activation in cerebral ischemia provides a plausible molecular explanation for the prolonged treatment window observed for inhibition of the end-target gene product, SUR1, by glibenclamide.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom