z-logo
open-access-imgOpen Access
Quantification of Ligand PET Studies using a Reference Region with a Displaceable Fraction: Application to Occupancy Studies with [11C]-DASB as an Example
Author(s) -
Federico Turkheimer,
Sudhakar Selvaraj,
Rainer Hinz,
Venkatesha Murthy,
Zubin Bhagwagar,
Paul M. Grasby,
Oliver Howes,
Lula Rosso,
Subrata K. Bose
Publication year - 2011
Publication title -
journal of cerebral blood flow and metabolism
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.167
H-Index - 193
eISSN - 1559-7016
pISSN - 0271-678X
DOI - 10.1038/jcbfm.2011.108
Subject(s) - binding potential , positron emission tomography , reference data , reproducibility , nuclear medicine , ligand (biochemistry) , chemistry , computer science , mathematics , nuclear magnetic resonance , physics , statistics , data mining , medicine , biochemistry , receptor
This paper aims to build novel methodology for the use of a reference region with specific binding for the quantification of brain studies with radioligands and positron emission tomography (PET). In particular: (1) we introduce a definition of binding potential BP(D)=DVR-1 where DVR is the volume of distribution relative to a reference tissue that contains ligand in specifically bound form, (2) we validate a numerical methodology, rank-shaping regularization of exponential spectral analysis (RS-ESA), for the calculation of BP(D) that can cope with a reference region with specific bound ligand, (3) we demonstrate the use of RS-ESA for the accurate estimation of drug occupancies with the use of correction factors to account for the specific binding in the reference. [(11)C]-DASB with cerebellum as a reference was chosen as an example to validate the methodology. Two data sets were used; four normal subjects scanned after infusion of citalopram or placebo and further six test-retest data sets. In the drug occupancy study, the use of RS-ESA with cerebellar input plus corrections produced estimates of occupancy very close the ones obtained with plasma input. Test-retest results demonstrated a tight linear relationship between BP(D) calculated either with plasma or with a reference input and high reproducibility.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom