z-logo
open-access-imgOpen Access
Uncoupling of Endothelial Nitric Oxide Synthase after Experimental Subarachnoid Hemorrhage
Author(s) -
Mohammed Sabri,
Jinglu Ai,
Britta J. Knight,
Asma Tariq,
Hyojin Jeon,
Xueyuan Shang,
Philip A. Marsden,
R. Loch Macdonald
Publication year - 2010
Publication title -
journal of cerebral blood flow and metabolism
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.167
H-Index - 193
eISSN - 1559-7016
pISSN - 0271-678X
DOI - 10.1038/jcbfm.2010.76
Subject(s) - subarachnoid hemorrhage , enos , vasospasm , peroxynitrite , cerebral vasospasm , nitric oxide synthase , medicine , anesthesia , nitric oxide , endocrinology , hippocampus , cerebral arteries , chemistry , superoxide , biochemistry , enzyme
We studied whether endothelial nitric oxide synthase (eNOS) is upregulated and uncoupled in large cerebral arteries after subarachnoid hemorrhage (SAH) and also whether this causes cerebral vasospasm in a mouse model of anterior circulation SAH. Control animals underwent injection of saline instead of blood ( n=16 SAH and n=16 controls). There was significant vasospasm of the middle cerebral artery 2 days after SAH (lumen radius/wall thickness ratio 4.3±1.3 for SAH, 23.2±2.1 for saline, P<0.001). Subarachnoid hemorrhage was associated with terminal deoxynucleotidyl transferase dUTP nick-end labeling, cleaved caspase-3, and Fluoro-Jade-positive neurons in the cortex and with CA1 and dentate regions in the hippocampus. There were multiple fibrinogen-positive microthromboemboli in the cortex and hippocampus after SAH. Transgenic mice expressing lacZ under control of the eNOS promoter had increased X-gal staining in large arteries after SAH, and this was confirmed by the increased eNOS protein on western blotting. Evidence that eNOS was uncoupled was found in that nitric oxide availability was decreased, and superoxide and peroxynitrite concentrations were increased in the brains of mice with SAH. This study suggests that artery constriction by SAH upregulates eNOS but that it is uncoupled and produces peroxynitrite that may generate microemboli that travel distally and contribute to brain injury.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom