z-logo
open-access-imgOpen Access
Roles of Macrophages in Flow-Induced Outward Vascular Remodeling
Author(s) -
Yoshitsugu Nuki,
Melissa Matsumoto,
Eric Tsang,
William L. Young,
Nico van Rooijen,
Chie Kurihara,
Tomoki Hashimoto
Publication year - 2008
Publication title -
journal of cerebral blood flow and metabolism
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.167
H-Index - 193
eISSN - 1559-7016
pISSN - 0271-678X
DOI - 10.1038/jcbfm.2008.136
Subject(s) - infiltration (hvac) , matrix metalloproteinase , common carotid artery , right common carotid artery , hemodynamics , blood flow , inflammation , macrophage , ligation , medicine , pathology , chemistry , carotid arteries , materials science , in vitro , biochemistry , composite material
Sustained hemodynamic stresses, especially sustained high blood flow, result in flow-induced outward vascular remodeling. Mechanisms that link hemodynamic stresses to vascular remodeling are not well understood. Inflammatory cells, known for their release of proteinases, including matrix metalloproteinases (MMPs), are emerging as key mediators for various tissue remodeling. Using a flow-augmented common carotid artery model in rats, we tested whether macrophages play critical roles in adaptive outward vascular remodeling in response to an increase in blood flow. Left common carotid artery ligation caused a sustained increase in blood flow with a gradual increase in luminal diameter in the right common carotid artery. Macrophages infiltrated into the vascular wall that peaked 3 days after flow augmentation. The time course of MMP-9 expression coincided with infiltration of macrophages. Macrophage depletion by liposome-encapsulated dichloromethylene diphosphonate significantly reduced flow-induced outward vascular remodeling, as indicated by the smaller luminal diameter of flow-augmented right common carotid artery in the clodronate-treated group compared with the phosphate-buffered saline-treated group ( P<0.05). These data show critical roles of macrophages in flow-induced outward vascular remodeling. Inflammatory cell infiltration and their subsequent release of cytokines may be key processes for flow-induced outward vascular remodeling.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom