2,5-Dimethylcelecoxib prevents pressure-induced left ventricular remodeling through GSK-3 activation
Author(s) -
Ai Fujita,
Fumi TakahashiYanaga,
Sachio Morimoto,
Tatsuya Yoshihara,
Masaki Arioka,
Kazunobu Igawa,
Katsuhiko Tomooka,
Sumio Hoka,
Toshiyuki Sasaguri
Publication year - 2016
Publication title -
hypertension research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.022
H-Index - 89
eISSN - 1348-4214
pISSN - 0916-9636
DOI - 10.1038/hr.2016.122
Subject(s) - ventricular remodeling , cardiology , medicine , ventricular pressure , blood pressure , heart failure
Glycogen synthase kinase-3 (GSK-3) is a crucial regulator of cardiac hypertrophy. We previously reported that 2,5-dimethylcelecoxib (DM-celecoxib), a celecoxib derivative unable to inhibit cyclooxygenase-2, prevented cardiac remodeling by activating GSK-3, resulting in lifespan prolongation in a mouse model of genetic dilated cardiomyopathy. In the present study, we investigated whether DM-celecoxib can also prevent pressure-induced cardiac remodeling and heart failure, elicited by transverse aortic constriction (TAC). Before testing the effects of DM-celecoxib, we compared the effects of TAC on the hearts of wild-type and GSK-3β hetero-deficient (GSK-3β +/- ) mice to determine the role of GSK-3 in cardiac remodeling and heart failure. GSK-3β +/- mouse hearts exhibited more severe hypertrophy, which was characterized by accelerated interstitial fibrosis, than wild-type mouse hearts after TAC, suggesting that reduced GSK-3β activity aggravates pressure-induced left ventricular remodeling. We subsequently examined the effects of DM-celecoxib on TAC-induced cardiac remodeling. DM-celecoxib inhibited left ventricular systolic functional deterioration, and prevented left ventricular hypertrophy and fibrosis. It also activated GSK-3α and β by inhibiting Akt, suppressing the activity of β-catenin and nuclear factor of activated T-cells and thereby decreasing the expression of the Wnt/β-catenin target gene products fibronectin and matrix metalloproteinase-2. These results suggest that DM-celecoxib is clinically useful for treating pressure-induced heart diseases.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom