
Protein transduction by pseudotyped lentivirus-like nanoparticles
Author(s) -
Takuya Aoki,
Katsumi Miyauchi,
Emiko Urano,
Reiko Ichikawa,
Jun Komano
Publication year - 2011
Publication title -
gene therapy
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.332
H-Index - 159
eISSN - 1476-5462
pISSN - 0969-7128
DOI - 10.1038/gt.2011.38
Subject(s) - transduction (biophysics) , biology , hek 293 cells , transfection , myristoylation , microbiology and biotechnology , signal transduction , capsid , vesicular stomatitis virus , cell culture , virology , biochemistry , phosphorylation , virus , genetics
A simple, efficient and reproducible method to transduce proteins into mammalian cells has not been established. Here we describe a novel protein transduction method based on a lentiviral vector. We have developed a method to package several thousand foreign protein molecules into a lentivirus-like nanoparticle (LENA) and deliver them into mammalian cells. In this proof-of-concept study, we used β-lactamase (BlaM) as a reporter molecule. The amino-terminus of BlaM was fused to the myristoylation signal of lyn, which was placed upstream of the amino-terminus of Gag (BlaM-gag-pol). By co-transfection of plasmids encoding BlaM-gag-pol and vesicular stomatitis virus-G (VSV-G) into 293T cells, LENA were produced containing BlaM enzyme molecules as many as Gag per capsid, which has been reported to be ∼5000 molecules, but lacking the viral genome. Infection of 293T and MT-4 cells by VSV-G-pseudotyped BlaM-containing LENA led to successful transduction of BlaM molecules into the cell cytoplasm, as detected by cleavage of the fluorescent BlaM substrate CCF2-AM. LENA-mediated transient protein transduction does not damage cellular DNA, and the preparation of highly purified protein is not necessary. This technology is potentially useful in various basic and clinical applications.