z-logo
open-access-imgOpen Access
Co-encapsulation of bioengineered IGF-II-producing cells and pancreatic islets: effect on beta-cell survival
Author(s) -
Guillaume Jourdan,
Julie Dusseault,
Pierre Yves Benhamou,
Lawrence Rosenberg,
JeanPierre Hallé
Publication year - 2011
Publication title -
gene therapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.332
H-Index - 159
eISSN - 1476-5462
pISSN - 0969-7128
DOI - 10.1038/gt.2010.166
Subject(s) - islet , acridine orange , transplantation , propidium iodide , pancreatic islets , biology , andrology , microbiology and biotechnology , in vivo , in vitro , apoptosis , endocrinology , medicine , insulin , biochemistry , programmed cell death
Insulin-like growth factor-II (IGF-II) has been shown to promote pancreatic β-cell survival. We evaluated the effect of co-encapsulating islets and bioengineered IGF-II-producing cells on islet cell survival. IGF-II or green fast protein (GFP) genes were transferred into TM4 cells, and purified using a neomycin resistance gene, leading to pure cell cultures (TM4-IGF-II or TM4-GFP) with a stable overexpression of the transferred gene. Islets were co-encapsulated with TM4-IGF-II or TM4-GFP, or encapsulated alone in alginate microcapsules. Rat and mouse islet cell survival was studied in vitro and in vivo, respectively. After 12 days in culture, islet viability (dual staining, acridine orange/propidium iodide) was 83% with TM4-IGF-II, compared with 51% (P<0.05) and 41% (P<0.001) with TM4-GFP and islets alone, respectively. The study of islet necrotic centers and the evaluation of islet function, using the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) assay, yielded similar results. From 125 days after transplantation, more diabetic mice maintained normoglycemia when they were transplanted with islets co-encapsulated with TM4-IGF-II (4/7). A significant difference for the maintenance of normoglycemia was observed between recipients of islets co-encapsulated with TM4-IGF-II versus islets alone (P=0.023), or with TM4-GFP (P=0.048). In conclusion, the co-encapsulation of islets with bioengineered IGF-II-producing cells promotes islet cell survival.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here