z-logo
open-access-imgOpen Access
Infrequent methylation of CDKN2A(MTS1/p16) and rare mutation of both CDKN2A and CDKN2B(MTS2/p15) in primary astrocytic tumours
Author(s) -
EE Schmidt,
Koichi Ichimura,
K R Messerle,
H. Goike,
V. Peter Collins
Publication year - 1997
Publication title -
british journal of cancer
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.833
H-Index - 236
eISSN - 1532-1827
pISSN - 0007-0920
DOI - 10.1038/bjc.1997.2
Subject(s) - cdkn2a , biology , cancer research , cpg site , cdkn2b , methylation , dna methylation , missense mutation , anaplastic astrocytoma , point mutation , exon , allele , gene , microbiology and biotechnology , mutation , genetics , glioma , astrocytoma , gene expression
In a series of 46 glioblastomas, 16 anaplastic astrocytomas and eight astrocytomas, all tumours retaining one or both alleles of CDKN2A (48 tumours) and CDKN2B (49 tumours) were subjected to sequence analysis (entire coding region and splice acceptor and donor sites). One glioblastoma with hemizygous deletion of CDKN2A showed a missense mutation in exon 2 (codon 83) that would result in the substitution of tyrosine for histidine in the protein. None of the tumours retaining alleles of CDKN2B showed mutations of this gene. Glioblastomas with retention of both alleles of CDKN2A (14 tumours) and CDKN2B (16 tumours) expressed transcripts for these genes. In contrast, 7/13 glioblastomas with hemizygous deletions of CDKN2A and 8/11 glioblastomas with hemizygous deletions of CDKN2B showed no or weak expression. Anaplastic astrocytomas and astrocytomas showed a considerable variation in the expression of both genes, regardless of whether they retained one or two copies of the genes. The methylation status of the 5' CpG island of the CDKN2A gene was studied in all 15 tumours retaining only one allele of CDKN2A as well as in the six tumours showing no significant expression of transcript despite their retaining both CDKN2A alleles. Three tumours (one of each malignancy grade studied) were found to have partially methylated the 5' CpG island of CDKN2A. It appears that in human astrocytic gliomas point mutations of the CDKN2A and CDKN2B genes are uncommon and hypermethylation of the 5' CpG region of CDKN2A does not appear to be a major mechanism for inhibiting transcription of this gene.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom