
Enhancement of photodynamic therapy with 5-aminolaevulinic acid-induced porphyrin photosensitisation in normal rat colon by threshold and light fractionation studies
Author(s) -
Helmut Messmann,
Peter Mlkvý,
Giovanni A. Buonaccorsi,
C. L. Davies,
Alexander J. MacRobert,
Stephen G. Bown
Publication year - 1995
Publication title -
british journal of cancer
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.833
H-Index - 236
eISSN - 1532-1827
pISSN - 0007-0920
DOI - 10.1038/bjc.1995.378
Subject(s) - photodynamic therapy , lesion , medicine , nuclear medicine , photosensitivity , necrosis , porphyrin , toxicity , urology , pathology , chemistry , materials science , photochemistry , optoelectronics , organic chemistry
5-Aminolaevulinic acid (ALA)-induced prophyrin photosensitisation is an attractive option for photodynamic therapy (PDT) since skin photosensitivity is limited to 1-2 days. However, early clinical results on colon tumours using the maximum tolerated oral dose of 60 mg kg-1 showed only superficial necrosis, presumably owing to insufficient intratumoral porphyrin levels, although inadequate light dosimetry may also be a factor. We undertook experiments using ALA, 25-400 mg kg-1 intravenously, to establish the threshold doses required for a PDT effect. Laser light at 630 nm (100 mW, 10-200 J) was delivered to a single site in the colon of photosensitised normal Wistar rats at laparotomy. The animals were killed 3 days later and the area of PDT-induced necrosis measured. No lesion was seen with 25 mg kg-1. The lesion size increased with larger ALA doses and with the light dose but little benefit was seen from increasing the ALA dose above 200 mg kg-1 or the light dose above 100 J. Thus there is a fairly narrow window for optimum doses of drug and light. Further experiments showed that the PDT effect can be markedly enhanced by fractionating the light dose. A series of animals was sensitized with 200 mg kg-1 ALA and then treated with 25 J. With continuous irradiation, the lesion area was 13 mm2, but with a single interruption of 150 s the area rose to 94 mm2 with the same total energy. Results were basically similar for different intervals between fractions (10-900 s) and different numbers of fractions (2-25). This suggests that a single short interruption in the light irradiation may dramatically reduce the net light dose required to achieve extensive necrosis.