z-logo
open-access-imgOpen Access
Moving time: The influence of action on duration perception.
Author(s) -
Clare Press,
Eva Berlot,
Geoffrey Bird,
Richard B. Ivry,
Richard Cook
Publication year - 2014
Publication title -
journal of experimental psychology general
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.521
H-Index - 161
eISSN - 1939-2222
pISSN - 0096-3445
DOI - 10.1037/a0037650
Subject(s) - perception , psychology , time perception , cognitive psychology , sensory system , stimulus (psychology) , action (physics) , perspective (graphical) , duration (music) , computer science , neuroscience , artificial intelligence , physics , quantum mechanics , art , literature
Perceiving the sensory consequences of action accurately is essential for appropriate interaction with our physical and social environments. Prediction mechanisms are considered necessary for fine-tuned sensory control of action, yet paradoxically may distort perception. Here, we examine this paradox by addressing how movement influences the perceived duration of sensory outcomes congruent with action. Experiment 1 required participants to make judgments about the duration of vibrations applied to a moving or stationary finger. In Experiments 2 and 3, participants judged observed finger movements that were congruent or incongruent with their own actions. In all experiments, target events were perceived to be longer when congruent with movement. Interestingly, this temporal dilation did not differ as a function of stimulus perspective (1st or 3rd person) or spatial location. We propose that this bias may reflect the operation of an adaptive mechanism for sensorimotor selection and control that preactivates anticipated outcomes of action. The bias itself may have surprising implications for both action control and perception of others: we may be in contact with grasped objects for less time than we realize, and others' reactions to us may be briefer than we believe.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom