z-logo
open-access-imgOpen Access
A neural population model for visual pattern detection.
Author(s) -
Robbe L. T. Goris,
Tom Putzeys,
Johan Wagemans,
Felix A. Wichmann
Publication year - 2013
Publication title -
psychological review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.688
H-Index - 211
eISSN - 1939-1471
pISSN - 0033-295X
DOI - 10.1037/a0033136
Subject(s) - visual cortex , neurophysiology , psychophysics , perception , computer science , visual perception , population , artificial intelligence , psychology , pattern recognition (psychology) , cognitive psychology , neuroscience , demography , sociology
Pattern detection is the bedrock of modern vision science. Nearly half a century ago, psychophysicists advocated a quantitative theoretical framework that connected visual pattern detection with its neurophysiological underpinnings. In this theory, neurons in primary visual cortex constitute linear and independent visual channels whose output is linked to choice behavior in detection tasks via simple read-out mechanisms. This model has proven remarkably successful in accounting for threshold vision. It is fundamentally at odds, however, with current knowledge about the neurophysiological underpinnings of pattern vision. In addition, the principles put forward in the model fail to generalize to suprathreshold vision or perceptual tasks other than detection. We propose an alternative theory of detection in which perceptual decisions develop from maximum-likelihood decoding of a neurophysiologically inspired model of population activity in primary visual cortex. We demonstrate that this theory explains a broad range of classic detection results. With a single set of parameters, our model can account for several summation, adaptation, and uncertainty effects, thereby offering a new theoretical interpretation for the vast psychophysical literature on pattern detection.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom