Theory-based causal induction.
Author(s) -
Thomas L. Griffiths,
Joshua B. Tenenbaum
Publication year - 2009
Publication title -
psychological review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.688
H-Index - 211
eISSN - 1939-1471
pISSN - 0033-295X
DOI - 10.1037/a0017201
Subject(s) - unobservable , causal inference , causal structure , causal model , inference , computer science , artificial intelligence , machine learning , causal theory of reference , domain (mathematical analysis) , inductive bias , inductive reasoning , causality (physics) , statistical inference , natural language processing , task (project management) , multi task learning , mathematics , econometrics , epistemology , mathematical analysis , philosophy , statistics , physics , management , quantum mechanics , economics
Inducing causal relationships from observations is a classic problem in scientific inference, statistics, and machine learning. It is also a central part of human learning, and a task that people perform remarkably well given its notorious difficulties. People can learn causal structure in various settings, from diverse forms of data: observations of the co-occurrence frequencies between causes and effects, interactions between physical objects, or patterns of spatial or temporal coincidence. These different modes of learning are typically thought of as distinct psychological processes and are rarely studied together, but at heart they present the same inductive challenge-identifying the unobservable mechanisms that generate observable relations between variables, objects, or events, given only sparse and limited data. We present a computational-level analysis of this inductive problem and a framework for its solution, which allows us to model all these forms of causal learning in a common language. In this framework, causal induction is the product of domain-general statistical inference guided by domain-specific prior knowledge, in the form of an abstract causal theory. We identify 3 key aspects of abstract prior knowledge-the ontology of entities, properties, and relations that organizes a domain; the plausibility of specific causal relationships; and the functional form of those relationships-and show how they provide the constraints that people need to induce useful causal models from sparse data.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom