Premium
Direct Observations of the Role of Lateral Advection of Sea Ice Meltwater in the Onset of Autumn Freeze Up
Author(s) -
Crews Laura,
Lee Craig M.,
Rainville Luc,
Thomson Jim
Publication year - 2022
Publication title -
journal of geophysical research: oceans
Language(s) - English
Resource type - Journals
eISSN - 2169-9291
pISSN - 2169-9275
DOI - 10.1029/2021jc017775
Subject(s) - meltwater , sea ice , advection , melt pond , mixed layer , arctic ice pack , geology , antarctic sea ice , climatology , arctic , cryosphere , fast ice , oceanography , environmental science , snow , geomorphology , physics , thermodynamics
Abstract In seasonally ice‐free parts of the Arctic Ocean, autumn is characterized by heat loss from the upper ocean to the atmosphere and the onset of freeze up, in which first year sea ice begins to grow in open water areas. The timing of freeze up can be highly spatially variable, complicating efforts to provide accurate sea ice forecasting for marine operations. While melt season anomalies can be used to predict freeze up anomalies in some parts of the Arctic, this one‐dimensional view merits further examination in light of recent work demonstrating the importance of three‐dimensional flows in setting mixed layer properties in marginal ice zones. In this study, we show that horizontal advection of sea ice meltwater hastens freeze up in areas distant from the ice edge. We use nearly 800 temperature and salinity profiles along with satellite imagery collected in the central Beaufort Sea in autumn 2018 to document the roughly 100 km advection of a cold and fresh surface meltwater layer over several weeks. After the meltwater arrived, the mixed layer was cooler and shallower than the mixed layer in adjacent areas unaffected by the meltwater. The cooler and shallower meltwater‐influenced mixed layer promoted earlier ice formation. Within the meltwater‐affected area, advection was nearly as important as heat loss to the atmosphere for seasonally integrated mixed layer heat loss.