
Cassini UVIS observations of Titan nightglow spectra
Author(s) -
Ajello Joseph M.,
West Robert A.,
Gustin Jacques,
Larsen Kristopher,
Stewart A. Ian F.,
Esposito Larry W.,
McClintock William E.,
Holsclaw Gregory M.,
Bradley E. Todd
Publication year - 2012
Publication title -
journal of geophysical research: space physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2012ja017888
Subject(s) - airglow , thermosphere , physics , ionosphere , atmospheric sciences , extreme ultraviolet , solar zenith angle , astronomy , optics , laser
In this paper we present the first nightside EUV and FUV airglow limb spectra of Titan showing molecular emissions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan's day and night limb‐airglow and disk‐airglow on multiple occasions, including during an eclipse observation. The 71 airglow observations analyzed in this paper show EUV (600–1150 Å) and FUV (1150–1900 Å) atomic multiplet lines and band emissions arising from either photoelectron induced fluorescence and solar photo‐fragmentation of molecular nitrogen (N 2 ) or excitation by magnetosphere plasma. The altitude of the peak UV emissions on the limb during daylight occurred inside the thermosphere at the altitude of the topside ionosphere (near 1000 km altitude). However, at night on the limb, a subset of emission features, much weaker in intensity, arise in the atmosphere with two different geometries. First, there is a twilight photoelectron‐excited glow that persists with solar depression angle up to 25–30 degrees past the terminator, until the solar XUV shadow height passes the altitude of the topside ionosphere (1000–1200 km). The UV twilight glow spectrum is similar to the dayglow but weaker in intensity. Second, beyond 120° solar zenith angle, when the upper atmosphere of Titan is in total XUV darkness, there is indication of weak and sporadic nightside UV airglow emissions excited by magnetosphere plasma collisions with ambient thermosphere gas, with similar N 2 excited features as above in the daylight or twilight glow over an extended altitude range.