
Modeling large scale shoreline sand waves under oblique wave incidence
Author(s) -
den Berg N.,
Falqués A.,
Ribas F.
Publication year - 2012
Publication title -
journal of geophysical research: earth surface
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2011jf002177
Subject(s) - shore , geology , instability , breaking wave , wavelength , oblique case , wind wave , wave propagation , scale (ratio) , mechanics , physics , oceanography , optics , linguistics , philosophy , quantum mechanics
The hypothesis that the formation and dynamics of large scale shoreline sand waves can be explained by a feedback mechanism between waves and nearshore morphology under very oblique wave incidence is explored with a quasi 2D nonlinear morphodynamic model. Using constant wave conditions it is found that if the wave incidence angle at the depth of closure is larger than about 45° the rectilinear coastline becomes unstable and a shoreline sand wavefield develops from small random perturbations. Shoreline sand waves develop with wavelengths between 2 and 5 km, they migrate downdrift at about 0.5 km/yr and they reach amplitudes up to 120 m within 13 years. Larger wave obliquity, higher waves and shorter wave periods strengthen the shoreline instability. Cross‐shore transport is essential for the instability and faster cross‐shore dynamics leads to a faster growth of the sand waves. Simulations with variable wave incidence angles (alternating between 60° and 30°) show that a large proportion of high angle waves is required for spontaneous sand wave formation (at least 80%). Insight is provided into the physical mechanism behind high angle wave instability and the occurrence of a optimal length scale for sand wave growth. The generic model results are consistent with existing observations of shoreline sand waves, in particular with those along the southwest coast of Africa.