z-logo
open-access-imgOpen Access
Size‐resolved particulate matter composition in Beijing during pollution and dust events
Author(s) -
Dillner Ann M.,
Schauer James J.,
Zhang Yuanhang,
Zeng Limin,
Cass Glen R.
Publication year - 2006
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2005jd006400
Subject(s) - particulates , pollution , dust storm , environmental science , environmental chemistry , beijing , storm , particulate pollution , air pollution , atmospheric sciences , meteorology , chemistry , geology , china , geography , ecology , organic chemistry , archaeology , biology
Each spring, Beijing, China, experiences dust storms which cause high particulate matter concentrations. Beijing also has many anthropogenic sources of particulate matter including the large Capitol Steel Company. On the basis of measured size segregated, speciated particulate matter concentrations, and calculated back trajectories, three types of pollution events occurred in Beijing from 22 March to 1 April 2001: dust storms, urban pollution events, and an industrial pollution event. For each event type, the source of each measured element is determined to be soil or anthropogenic and profiles are created that characterize the particulate matter composition. Dust storms are associated with winds traveling from desert regions and high total suspended particle (TSP) and PM2.5 concentrations. Sixty‐two percent of TSP is due to elements with oxides and 98% of that is from soil. Urban pollution events have smaller particulate concentrations but 49% of the TSP is from soil, indicating that dust is a major component of the particulate matter even when there is not an active dust storm. The industrial pollution event is characterized by winds from the southwest, the location of the Capitol Steel Company, and high particulate concentrations. PM2.5 mass and acidic ion concentrations are highest during the industrial pollution event as are Mn, Zn, As, Rb, Cd, Cs and Pb concentrations. These elements can be used as tracers for industrial pollution from the steel mill complex. The industrial pollution is potentially more detrimental to human health than dust storms due to higher PM2.5 concentrations and higher acidic ion and toxic particulate matter concentrations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here