
Microblock rotations and fault coupling in SE Asia triple junction (Sulawesi, Indonesia) from GPS and earthquake slip vector data
Author(s) -
Socquet Anne,
Simons Wim,
Vigny Christophe,
McCaffrey Robert,
Subarya Cecep,
Sarsito Dina,
Ambrosius Boudewijn,
Spakman Wim
Publication year - 2006
Publication title -
journal of geophysical research: solid earth
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2005jb003963
Subject(s) - clockwise , geology , seismology , triple junction , fault (geology) , slip (aerodynamics) , block (permutation group theory) , tectonics , global positioning system , geodesy , plate tectonics , escarpment , paleontology , geometry , rotation (mathematics) , geophysics , physics , telecommunications , mathematics , computer science , thermodynamics
The island of Sulawesi, eastern Indonesia, is located within the triple junction of the Australian, Philippine, and Sunda plates and accommodates the convergence of continental fragments with the Sunda margin. We quantify the kinematics of Sulawesi by modeling GPS velocities and earthquake slip vectors as a combination of rigid block rotations and elastic deformation around faults. We find that the deformation can be reasonably described by a small number of rapidly rotating crustal blocks. Relative to the Sunda Plate, the southwestern part of Sulawesi (Makassar Block) rotates anticlockwise at ∼1.4°/Myr. The northeastern part of Sulawesi, the Bangai‐Sula domain, comprises three blocks: the central North Sula Block moves toward the NNW and rotates clockwise at ∼2.5°/Myr, the northeastern Manado Block rotates clockwise at ∼3°/Myr about a nearby axis, and East Sulawesi is pinched between the North Sula and Makassar blocks. Along the boundary between the Makassar Block and the Sunda Plate, GPS measurements suggest that the trench accommodates ∼15 mm/yr of slip within the Makassar Strait with current elastic strain accumulation. The tectonic boundary between North Sula and Manado blocks is the Gorontalo Fault, moving right laterally at about 11 mm/yr and accumulating elastic strain. The 42 mm/yr relative motion between North Sula and Makassar blocks is accommodated on the Palu‐Koro left‐lateral strike‐slip fault zone. The data also indicate a pull‐apart structure in Palu area, where the fault shows a transtensive motion and may have a complex geometry involving several active strands. Sulawesi provides a primary example of how collision can be accommodated by crustal block rotation instead of mountain building.