Land surface conditions over Eurasia and Indian summer monsoon rainfall
Author(s) -
Robock Alan,
Mu Mingquan,
Vinnikov Konstantin,
Robinson David
Publication year - 2003
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2002jd002286
Subject(s) - monsoon , climatology , precipitation , environmental science , snow , east asian monsoon , monsoon of south asia , atmospheric circulation , north atlantic oscillation , atmospheric sciences , geology , geography , meteorology , geomorphology
Using observations of snow cover, soil moisture, surface air temperature, atmospheric circulation, and Indian summer monsoon precipitation from 1870 to 2000, we examine the relationship between interannual variations of the strength of the monsoon and land surface conditions over Eurasia. For the periods 1870–1895 and 1950–1995, strong Indian summer monsoon precipitation was preceded by warmer than normal temperatures over Europe and North America in the previous winter and over western Asia in the previous spring but colder temperatures over Tibet. The European temperature anomalies were related to the positive phase of the North Atlantic Oscillation (NAO). Related negative snow cover anomalies in Europe in winter and central Asia in spring were produced by circulation and temperature anomalies. The snow‐albedo feedback is always operating, but the snow by itself did not physically control the monsoon. Anomalous snow cover impacts on temperature were not prolonged by soil moisture feedbacks because of its short time memory, and there was no obvious relationship between soil moisture and the monsoon. Strong Indian summer monsoon precipitation was actually preceded by higher than normal Tibetan snow cover in winter and spring in contrast to the suggestion of Blanford [1884] more than a century ago. The correlation between Indian summer monsoon rainfall and winter land temperatures and snow cover only exists when interannual variation of the NAO is very strong, and therefore NAO is not a robust predictor of the monsoon. Climate models show that the relationship between NAO and monsoon is random.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom