
Dissolved hydrocarbon flux from natural marine seeps to the southern California Bight
Author(s) -
Clark Jordan F.,
Washburn Libe,
Hornafius J. Scott,
Luyendyk Bruce P.
Publication year - 2000
Publication title -
journal of geophysical research: oceans
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2000jc000259
Subject(s) - petroleum seep , methane , oceanography , geology , flux (metallurgy) , plume , advection , environmental science , meteorology , geography , chemistry , physics , thermodynamics , organic chemistry
Natural marine seepage near Coal Oil Point, Santa Barbara Channel, California, injects large quantities of hydrocarbons into the coastal ocean. The dispersal and source strength of the injected methane, ethane, and propane from this seep field was determined using a variety of oceanographic and geochemical techniques. The results show that hydrocarbons seep into stratified coastal waters creating plumes that extend for at least 12 km. The plume structure is complex because of the large geographical distribution of seep vents and because of the chaotic nature of advection and mixing near the seeps. At the time of the survey, hydrocarbons were injected onto density surfaces between σ θ = 24.5–26.0 kg m −3 . Earlier work has shown that subsurface methane maxima in the upper waters of the southern California Bight are typically found on these density surfaces. We estimate that the total flux of methane into the water column above the Coal Oil Point seeps is 2×10 10 g yr −1 and is approximately equal to the total flux of dissolved methane to the atmosphere estimated for the entire southern California Bight. These observations strongly support the inference of others that coastal sources, which include some of the world's largest marine hydrocarbon seeps, maintain the methane maximum observed offshore California. Estimates of the global methane flux from coastal waters derived by extrapolating the flux from coastal California may be too large because of the anomalous amount of marine hydrocarbon seepage in these waters.