z-logo
open-access-imgOpen Access
Epimeric 2-Deoxyribose Lesions: Products from the Improper Chemical Repair of 2-Deoxyribose Radicals
Author(s) -
Nicholas J. Amato,
Yinsheng Wang
Publication year - 2014
Publication title -
chemical research in toxicology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.031
H-Index - 156
eISSN - 1520-5010
pISSN - 0893-228X
DOI - 10.1021/tx400430g
Subject(s) - deoxyribose , radical , dna damage , dna , chemistry , nucleic acid , dna repair , reactive oxygen species , biochemistry , biophysics , biology
Genomic integrity is constantly challenged by DNA damaging agents such as reactive oxygen species (ROS). Consequently, DNA damage can compromise the fidelity and efficiency of essential DNA metabolic processes, including replication and transcription, which may contribute significantly to the etiology of many human diseases. Here, we review one family of DNA lesions, the epimeric 2-deoxyribose lesions, which arise from the improper chemical repair of the 2-deoxyribose radicals. Unlike most other DNA lesions, the epimeric 2-deoxyribose lesions are indistinguishable from their corresponding unmodified nucleosides in both molecular mass and chemical reactivity. We placed our emphasis of discussion on the formation of these lesions, their impact on the structure and stability of duplex DNA, their biological consequences, their potential therapeutic relevance, and future research directions about these modified nucleosides.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom