z-logo
open-access-imgOpen Access
Characterization of the Transient Oxaphosphetane BChE Inhibitor Formed from Spontaneously Activated Ethephon
Author(s) -
Stephen R. Lantz,
John E. Casida
Publication year - 2013
Publication title -
chemical research in toxicology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.031
H-Index - 156
eISSN - 1520-5010
pISSN - 0893-228X
DOI - 10.1021/tx4002429
Subject(s) - ethephon , chemistry , ethylene , degradation (telecommunications) , aqueous solution , phosphate , regulator , biochemistry , nuclear chemistry , organic chemistry , catalysis , computer science , gene , telecommunications
The major plant growth regulator ethephon degrades to ethylene and phosphate in aqueous solutions and plants and is spontaneously activated to a butyrylcholinesterase (BChE) inhibitor in alkaline solutions and animal tissues. In the present (31)P NMR kinetic study of the reactions of ethephon in pH 7.4 carbonate buffer, we observed a transient peak at 28.11 ppm. The time course for the appearance and disappearance of this peak matches the activation/degradation kinetic profile of the BChE inhibitor, and the chemical shift supports the proposed 2-oxo-2-hydroxy-1,2-oxaphosphetane structure.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom