Impedance Biosensors: Applications to Sustainability and Remaining Technical Challenges
Author(s) -
Rajeswaran Radhakrishnan,
Ian Ivar Suni,
Candace S. Bever,
Bruce D. Hammock
Publication year - 2014
Publication title -
acs sustainable chemistry and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.878
H-Index - 109
ISSN - 2168-0485
DOI - 10.1021/sc500106y
Subject(s) - biosensor , analyte , detection limit , biomolecule , nanotechnology , electrical impedance , chemistry , adsorption , materials science , chromatography , engineering , electrical engineering , organic chemistry
Due to their all-electrical nature, impedance biosensors have significant potential for use as simple and portable sensors for environmental studies and environmental monitoring. Detection of two endocrine-disrupting chemicals (EDC), norfluoxetine and BDE-47, is reported here by impedance biosensing, with a detection limit of 8.5 and 1.3 ng/mL for norfluoxetine and BDE-47, respectively. Although impedance biosensors have been widely studied in the academic literature, commercial applications have been hindered by several technical limitations, including possible limitations to small analytes, the complexity of impedance detection, susceptibility to nonspecific adsorption, and stability of biomolecule immobilization. Recent research into methods to overcome these obstacles is briefly reviewed. New results demonstrating antibody regeneration atop degenerate (highly doped) Si are also reported. Using 0.2 M KSCN and 10 mM HF for antibody regeneration, peanut protein Ara h 1 is detected daily during a 30 day trial.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom