z-logo
open-access-imgOpen Access
Intelligent Data Acquisition Blends Targeted and Discovery Methods
Author(s) -
Derek J. Bailey,
Molly T. McDevitt,
Michael S. Westphall,
David J. Pagliarini,
Joshua J. Coon
Publication year - 2014
Publication title -
journal of proteome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.644
H-Index - 161
eISSN - 1535-3907
pISSN - 1535-3893
DOI - 10.1021/pr401278j
Subject(s) - computer science , data acquisition , replicate , mass spectrometry , peptide , data mining , elution , data set , chromatography , computational biology , chemistry , artificial intelligence , biology , mathematics , biochemistry , statistics , operating system
A mass spectrometry (MS) method is described here that can reproducibly identify hundreds of peptides across multiple experiments. The method uses intelligent data acquisition to precisely target peptides while simultaneously identifying thousands of other, nontargeted peptides in a single nano-LC-MS/MS experiment. We introduce an online peptide elution order alignment algorithm that targets peptides based on their relative elution order, eliminating the need for retention-time-based scheduling. We have applied this method to target 500 mouse peptides across six technical replicate nano-LC-MS/MS experiments and were able to identify 440 of these in all six, compared with only 256 peptides using data-dependent acquisition (DDA). A total of 3757 other peptides were also identified within the same experiment, illustrating that this hybrid method does not eliminate the novel discovery advantages of DDA. The method was also tested on a set of mice in biological quadruplicate and increased the number of identified target peptides in all four mice by over 80% (826 vs 459) compared with the standard DDA method. We envision real-time data analysis as a powerful tool to improve the quality and reproducibility of proteomic data sets.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom