z-logo
open-access-imgOpen Access
Comparison of Protein Immunoprecipitation-Multiple Reaction Monitoring with ELISA for Assay of Biomarker Candidates in Plasma
Author(s) -
De Lin,
William E. Alborn,
Robbert J.C. Slebos,
D.C. Liebler
Publication year - 2013
Publication title -
journal of proteome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.644
H-Index - 161
eISSN - 1535-3907
pISSN - 1535-3893
DOI - 10.1021/pr400877e
Subject(s) - mesothelin , multiplex , chemistry , immunoprecipitation , selected reaction monitoring , cartilage oligomeric matrix protein , antibody , microbiology and biotechnology , monoclonal antibody , detection limit , chromatography , mass spectrometry , tandem mass spectrometry , biology , biochemistry , immunology , medicine , bioinformatics , alternative medicine , pathology , gene , osteoarthritis
Quantitative analysis of protein biomarkers in plasma is typically done by ELISA, but this method is limited by the availability of high-quality antibodies. An alternative approach is protein immunoprecipitation combined with multiple reaction monitoring mass spectrometry (IP-MRM). We compared IP-MRM to ELISA for the analysis of six colon cancer biomarker candidates (metalloproteinase inhibitor 1 (TIMP1), cartilage oligomeric matrix protein (COMP), thrombospondin-2 (THBS2), endoglin (ENG), mesothelin (MSLN) and matrix metalloproteinase-9 (MMP9)) in plasma from colon cancer patients and noncancer controls. Proteins were analyzed by multiplex immunoprecipitation from plasma with the ELISA capture antibodies, further purified by SDS-PAGE, digested and analyzed by stable isotope dilution MRM. IP-MRM provided linear responses (r = 0.978-0.995) between 10 and 640 ng/mL for the target proteins spiked into a "mock plasma" matrix consisting of 60 mg/mL bovine serum albumin. Measurement variation (coefficient of variation at the limit of detection) for IP-MRM assays ranged from 2.3 to 19%, which was similar to variation for ELISAs of the same samples. IP-MRM and ELISA measurements for all target proteins except ENG were highly correlated (r = 0.67-0.97). IP-MRM with high-quality capture antibodies thus provides an effective alternative method to ELISA for protein quantitation in biological fluids.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom