z-logo
open-access-imgOpen Access
Pressure-Assisted Protein Extraction: A Novel Method for Recovering Proteins from Archival Tissue for Proteomic Analysis
Author(s) -
Carol B. Fowler,
Timothy J. Waybright,
Timothy D. Veenstra,
Timothy J. O’Leary,
Jeffrey T. Mason
Publication year - 2012
Publication title -
journal of proteome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.644
H-Index - 161
eISSN - 1535-3907
pISSN - 1535-3893
DOI - 10.1021/pr201005t
Subject(s) - hydrostatic pressure , extraction (chemistry) , chemistry , protein purification , microbiology and biotechnology , liver tissue , proteomics , biochemistry , biology , chromatography , gene , physics , thermodynamics , endocrinology
Formaldehyde-fixed, paraffin-embedded (FFPE) tissue repositories represent a valuable resource for the retrospective study of disease progression and response to therapy. However, the proteomic analysis of FFPE tissues has been hampered by formaldehyde-induced protein modifications, which reduce protein extraction efficiency and may lead to protein misidentification. Here, we demonstrate the use of heat augmented with high hydrostatic pressure (40,000 psi) as a novel method for the recovery of intact proteins from FFPE mouse liver. When FFPE mouse liver was extracted using heat and elevated pressure, there was a 4-fold increase in protein extraction efficiency, a 3-fold increase in the extraction of intact proteins, and up to a 30-fold increase in the number of nonredundant proteins identified by mass spectrometry, compared to matched tissue extracted with heat alone. More importantly, the number of nonredundant proteins identified in the FFPE tissue was nearly identical to that of matched fresh-frozen tissue.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom