Proteomic Identification of PKC-Mediated Expression of 20E-Induced Protein in Drosophila melanogaster
Author(s) -
Yaning Sun,
Shiheng An,
Vincent C. Henrich,
Xiaoping Sun,
Qisheng Song
Publication year - 2007
Publication title -
journal of proteome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.644
H-Index - 161
eISSN - 1535-3907
pISSN - 1535-3893
DOI - 10.1021/pr0705183
Subject(s) - drosophila melanogaster , microbiology and biotechnology , identification (biology) , protein expression , proteomics , protein kinase c , drosophila (subgenus) , biology , chemistry , computational biology , signal transduction , biochemistry , gene , botany
Ecdysone receptor (EcR) and its heterodimeric partner, ultraspiracle protein (USP), are nuclear receptors that mediate the action of the insect molting hormone 20-hydroxyecdysone (20E). There is evidence that the activity of both receptors is affected by phosphorylation. Using a proteomic approach, we have shown that protein kinase C (PKC) activity is necessary for mediating 20E-induced expression of 14 specific proteins, including three previously reported 20E responsive proteins, and is also responsible for the intracellular localization of EcR and USP in larval salivary glands of Drosophila melanogaster. The 20E-dependent expression of the proteins was verified using real-time PCR and/or Western blot analysis. For some genes, inhibition of PKC activity reduced 20E-dependent transcriptional activity rapidly, raising the possibility that these are direct gene targets of EcR and USP. The data further indicate that PKC-mediated phosphorylation is also required for genes regulated indirectly by 20E-induced changes in the larval salivary gland.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom