z-logo
open-access-imgOpen Access
Proteomic Identification of Altered Proteins in Skeletal Muscle During Chronic Potassium Depletion: Implications for Hypokalemic Myopathy
Author(s) -
Visith Thongboonkerd,
Rattiyaporn Kanlaya,
Supachok Sinchaikul,
P Parichatikad,
ShuiTein Chen,
Prida Malasit
Publication year - 2006
Publication title -
journal of proteome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.644
H-Index - 161
eISSN - 1535-3907
pISSN - 1535-3893
DOI - 10.1021/pr060136h
Subject(s) - skeletal muscle , myopathy , potassium , proteomics , chemistry , endocrinology , medicine , biochemistry , biology , gene , organic chemistry
Prolonged potassium depletion is a well-known cause of myopathy. The pathophysiology of hypokalemic myopathy, however, remains unclear. We performed a gel-based, differential proteomics study to define altered proteins in skeletal muscles during chronic potassium depletion. BALB/c mice were fed with normal chow (0.36% K+) or K+-depleted (KD) diet (<0.001% K+) for 8 weeks (n = 5 in each group). Left gastrocnemius muscles were surgically removed from each animal. Histopathological examination showed mild-degree infiltration of polymornuclear and mononuclear cells at the interstitium of the KD muscles. Extracted proteins were resolved with two-dimensional electrophoresis (2-DE), and visualized with Coomassie Brilliant Blue R-250 stain. Quantitative intensity analysis revealed 16 up-regulated protein spots in the KD muscles, as compared to the controls. These differentially expressed proteins were subsequently identified by peptide mass fingerprinting and by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS). Most of the altered proteins induced by chronic potassium depletion were muscle enzymes that play significant roles in several various metabolic pathways. Other up-regulated proteins included myosin-binding protein H, alpha-B Crystallin, and translationally controlled tumor protein (TCTP). These findings may lead to a new roadmap for research on hypokalemic myopathy, to better understanding of the pathophysiology of this medical disease, and to biomarker discovery.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom